Assessing the risks of engineered nanomaterials

Setting the Scene

Andrew D. Maynard
Chief Science Advisor
Defining Nanotechnology
Richard Smalley

Nanotechnology:
“The art and science of building stuff that does stuff at the nanometer scale”

(1943 - 2005)
What has risk got to do with nanotechnology?

- New ways of doing things mean new risks to human health and the environment.

- The long-term success of nanotechnology will depend on identifying, assessing and managing potential risks.

- Defining nanotechnology risk research:
 - The art and science of addressing how *stuff that does stuff at the nanometer scale* might harm our health and the environment.
Nanotechnology Risk has relatively little meaning...
...unless we apply appropriate boundaries to the discussion
Setting Boundaries
Engineered nanomaterials which potentially present new challenges

- **Criteria:**
 - Nanomaterials capable of entering or interacting with the body or environment
 - Nanomaterials which potentially exhibit nanostructure-dependent biological activity

- **Nanoparticles**
 - Simple, complex, “smart”
 - Aerosols, powders, suspensions, slurries

- **Agglomerates**
 - or aggregates of nanoparticles

- **Aerosolized suspensions**
 - Including slurries and solutions of nanomaterials

- **Comminution**
 - Aerosols from grinding, cutting, machining nanomaterials

- **Degredation/Failure**
 - Aerosols and suspensions resulting from degradation and failure of nanomaterials

- **Unintentional use**
 - Potential exposure from unanticipated/unintentional use
What makes nano different: The significance of structure
ZnO: One chemistry, many shapes - Courtney of Prof. Z.L. Wang, Georgia Tech
Nanotechnology and potential risk
A thought experiment in the significance of structure on potential impact

Physical Structure
Low

Conventional Understanding
Macro-Materials
Liquids
Gases & Vapors

Unconventional Understanding
Nano-Materials & Devices

Compositional Structure
Low

Size
Shape
Surface Area
Surface Activity
Nano-Structure

Mass
Composition
Physicochemistry and the lungs
Comparison of insoluble materials with different biological activities

![Graph showing the relationship between inflammatory response and particle surface area dose for various materials.]

- Fine TiO$_2$ (Tran)
- Fine TiO$_2$ (Oberdörster)
- BaSO$_4$ (Tran)
- Ultrafine TiO$_2$ (Oberdörster)
- Crystalline SiO$_2$ (Porter)

Physicochemistry and the skin
Dermal Penetration - Quantum dots

4.6 nm diameter quantum dots
Different coatings
Confocal Microscopy / fluorescence analysis
Scale bar: 50 μm

Physicochemistry and Translocation
Translocation Following Inhalation - Lungs to Liver

Fraction of inhaled insoluble 192Ir translocating to liver in rats

Nano is NOW
Nano-Consumer Products

Nearly 400 manufacturer-identified “nano” consumer products are commercially available worldwide

www.nanotechproject.org/consumerproducts
Addressing Potential Impact

Exposure Routes → Exposure → Dose → Risk → Health Effects → Toxicity

Characterization → Education → Control → Reduced Impact

Knowledge Level: Poor to Good
Responding to the challenge

- **Sound Science**
 - Identifying critical questions, and finding applicable answers

- **Specificity**
 - Focusing on how the technology is used, not the technology itself

- **Simplification**
 - Identifying patterns and commonalities which will transform apparently intractable problems into a merely difficult ones
Measuring exposure to airborne nanostructured particles

Many potentially significant attributes: Few measurement metrics
Classifying Engineered Nanoparticles

Some thoughts

- **Compact/Sphere**
 - Homogeneous

- **High aspect ratio**
 - Homogeneous

- **Complex non-spherical**
 - Homogeneous

- **Heterogeneous aggregates**
 - Many particle classes

- **Homogeneous agglomerates**
 - Single particle class

- **Heterogeneous Core-surface**

- **Heterogeneous Distributed**

- **Active**
 - External stimuli

- **Multifunctional**
 - Complex responses

Note: size is treated separately
Identifying important attributes
Some more thoughts

- Differentiated component release
- Core-surface Heterogeneity
- Response to environment
- Response to stimulus
- Surface Chemistry
- Composition
- Solubility
- Shape
- Charge
- Porosity
- Surface Area
- Crystal Structure
- Distributed Heterogeneity
- Propensity to change structure
Matching exposure metrics, attributes and particle class

Shape
Surface area
Surface chemistry
Composition
Core-surface composition heterogeneity
Distributed composition heterogeneity
Solubility
Charge (in lung fluid)
Crystal structure
Porosity
Changes in particle size/structure following deposition
Preferential release of constituent components following deposition
Stimulus-associated behavior
Functional response to environment

Relevance
- High
- Medium
- Low
- None

Exposure Metric
Surface Area Concentration

Aitken and Maynard (2007), Nanotoxicology. In Preparation
Number Concentration

- Shape
- Surface area
- Surface chemistry
- Composition
- Core-surface composition heterogeneity
- Distributed composition heterogeneity
- Solubility
- Charge (in lung fluid)
- Crystal structure
- Porosity
- Changes in particle size/structure following deposition
- Preferential release of constituent components following deposition
- Stimulus-associated behavior
- Functional response to environment

Aitken and Maynard (2007), Nanotoxicology. In Preparation
Mass Concentration

- Shape
- Surface area
- Surface chemistry
- Composition
- Core-surface composition heterogeneity
- Distributed composition heterogeneity
- Solubility
- Charge (in lung fluid)
- Crystal structure
- Porosity
- Changes in particle size/structure following deposition
- Preferential release of constituent components following deposition
- Stimulus-associated behavior
- Functional response to environment

Relevance:
- High
- Medium
- Low
- None

Aitken and Maynard (2007), Nanotoxicology. In Preparation
Assessing the risk of engineered nanomaterials

The Challenge:

Sound Science
Identifying critical questions, and finding applicable answers

Specificity
Focus on how the technology is used, not the technology itself

Simplification
Identifying patterns and commonalities which will transform apparently intractable problems into a merely difficult ones
Further Reading

Further Information

Andrew D. Maynard PhD
Chief Science Advisor
Project on Emerging Nanotechnologies
Woodrow Wilson International Center for Scholars

Tel: +1 202 691 4311
Email: andrew.maynard@wilsoncenter.org
Web: www.nanotechproject.org