An important aspect of the Keck Center Annual Research Conference is the poster presentation and competition. Judges and guest speakers were highly complimentary of all 110 of the posters and presenters.

Poster winners were:

1st Place: Upma Sharma, Keck Fellow, Nanobiology Training Program, Rice University; *Nano-fiber Polymer Scaffolds for Tissue Engineering*, co-authors: Quynh Pham, Tony Mikos.

2nd Place: Maria Clara Añez, University of Houston; *Background-Resistant PCR Assays for Dengue Detection*, co-authors: Catherine Putonti,

3rd Place: Sonia Morgan-Linnell, Keck Fellow, HAMBP, Baylor College of Medicine; *Accounting for Fluoroquinolone Resistance in E. Coli*, co-authors: Merry J. Maynard, Charles E. Stager, Richard J. Hamill, Javier Rojo Jimenez, and E. Lynn Zechiedrich.
The Gulf Coast Consortia/Keck Center was one of six recipients of the Texas Higher Education 2005 Star Award, presented by the Texas Higher Education Coordinating Board (THECB), October 10, 2005 in Austin.

The award was established by THECB to recognize exemplary contributions toward goals of the state’s Closing the Gaps plan (www.thecb.state.tx.us/ClosingtheGaps/).

“The winners represent the state’s most effective efforts for closing the education gaps that challenge our state,” said Commissioner of Higher Education Raymund A. Paredes. “The Coordinating Board is proud to recognize the people and the institutions that develop and implement these programs, as well as the organizations and others who support them.”

Nominated by UTMB-Galveston, the GCC/Keck Center was one of 10 finalists and 58 nominations.

GCC/Keck Center was recognized as one of the largest inter-institutional cooperatives in the world, bringing together the strengths of Houston-Galveston-area academic medical research institutions and universities to build interdisciplinary collaborative research teams and training programs at the frontiers of biomedical sciences. The W. M. Keck Center for Interdisciplinary Bioscience Training – the training arm of the consortia – supports more than 70 trainees and has more than 200 faculty affiliated with eight joint training programs.

Imagine that Time magazine has asked you to submit an article describing your research, for which you will be nicely compensated. The catch is this: it must be written in general terms for the non-scientist. This means avoiding technical jargon, abbreviations, and words unfamiliar to an educated lay person.

In the article, you must describe the goals of your project, the importance of the research, the experimental approach, the results, and the implications or significance of the results for the broad area of drug discovery.

Would you accept the assignment?

“Communicating clearly and effectively to a wide variety of audiences is important to scientists,” says George Stancel, PI of the Pharmacoinformatics Training Program. “Providing opportunities to enhance communications skills is one of the objectives of our training program.”

Rising to the challenge were Keck Fellows in Pharmacoinformatics, who were invited to summit “lay” articles about their research. Four judges, journalists as well as other non-scientists, read and ranked the articles. Winners were announced at the Keck Center’s Annual Research Conference.

1st Place — Zanna Beharry, BCM, The Fight Against Drug-Resistant Anthrax

2nd Place — Jamie Catanese, BCM, Determining the Shape and Movement of a Drug Target Helps to Design More Effective Cancer Drugs

3rd Place — Lauren Becnel, BCM, Beating the Bugs: Using Science to Outsmart Resistant Bacteria
Ching Lau, Associate Professor, Baylor College of Medicine; David Powell, Vice President, Metabolism, Lexicon Genetics, Houston; Garth Powis, Chair, Department of Experimental Therapeutics, UT M. D. Anderson Cancer Center; Steven Wrighton, Senior Research Fellow, Department of Drug Disposition, Lilly Research, Eli Lilly & Co., Indianapolis; and Jack W. Smith, Interim Dean, School of Health Information Sciences, UTHSC-H.

Monte Pettitt, Chair of the Keck Executive Committee and PI of the Nanobiology Training Program, gave a personal retrospective of the Keck Center’s first 15 years.
The **Gulf Coast Consortia** (GCC) is an innovative research and education collaboration formed to provide a formal and lasting mechanism for advancing biological sciences in the 21st century.

The GCC is comprised of six prominent institutions: Baylor College of Medicine, Rice University, University of Houston, The University of Texas Health Science Center at Houston, The University of Texas M.D. Anderson Cancer Center and The University of Texas Medical Branch at Galveston. It is one of the largest inter-institutional co-operatives in the world with a focus on building strong research collaborations that bring together complementary and disparate faculty expertise as well as building multidisciplinary training opportunities for students in the computational, biological, mathematical, physical and chemical sciences.

For additional information, please visit the GCC website: www.gulfcoastconsortia.org

W.M. Keck Center Celebrates 15 Years, 1990-2005

The W.M. Keck Center for Computational and Structural Biology was established in 1990 with support from the W. M. Keck Foundation.

From the founding institutions, Rice University and Baylor College of Medicine, the Keck Center has now grown to six major public and private institutions in the Houston/Galveston region: Baylor College of Medicine, Rice University, University of Houston, The University of Texas Health Science Center at Houston, The University of Texas Medical Branch at Galveston, and The University of Texas M.D. Anderson Cancer Center.

Driving the formation of this collaboration was the realization that major advances in the biological sciences, such as the recently published DNA sequence of the human genome, would be driven by the integration of biology and computer science. The partners realized, however, that most biological scientists were not prepared to capitalize on novel approaches to visualization, analysis and interpretation of experimental data made possible by rapid advances in computing technology. Moreover, most researchers in computer programming and analysis systems did not have adequate knowledge about biology and biological systems.

The Keck Center was explicitly designed to bridge this gap between biological and computational sciences by fostering collaborations among biologists, biomedical researchers, mathematicians, and computer scientists through specially designed research and training programs. Building on its expertise in multidisciplinary inter-institutional programs, the Keck Center now supports programs in computational biology and medicine, computational and structural biology, biodefense, virus imaging, molecular biophysics, pharmacoinformatics, and nanobiology.