Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes

Sasa Zaric,1,4,5 Gordana N. Ostojic,2,4,5 Junichiro Kono,2,4,5* Jonah Shaver,1,4,5* Valerie C. Moore,3,4,5,6 Michael S. Strano,3,4,5,6† Robert H. Hauge,3,4,5,6 Richard E. Smalley,3,4,5,6 Xing Wei7

We report interband magneto-optical spectra for single-walled carbon nanotubes in high magnetic fields up to 45 tesla, confirming theoretical predictions that the band structure of a single-walled carbon nanotube is dependent on the magnetic flux ϕ threading the tube. We have observed field-induced optical anisotropy as well as red shifts and splittings of absorption and photoluminescence peaks. The amounts of shifts and splittings depend on the value of ϕ/h, and are quantitatively consistent with theories based on the Aharonov-Bohm effect. These results represent evidence of the influence of the Aharonov-Bohm phase on the band gap of a solid.

When a magnetic flux, ϕ, passes through a mesoscopic ring, the quantum states and dynamics of electrons on the ring are influenced by the Aharonov-Bohm (AB) phase (ϕ); that is, $\phi/2\pi$ where $\phi_0 = h/e$ is the magnetic flux quantum (h is the Planck constant and e is the electronic charge). When the phase coherence length exceeds the circumference, quantum interference between loop trajectories of opposite sense induces magnetoresistance oscillations with period ϕ_0 (known as AB oscillations) and $\phi_0/2$ [known as Altshuler-Aronov-Spivak (AAS) oscillations (2)]. These oscillations have been observed in various metallic rings and tubes (3), including the recent observation of the AAS oscillations in multivalled carbon nanotubes (4).

References and Notes
12. Materials and methods are available as supporting material on Science Online.
13. Age uncertainties are stated at the 2σ level for sample 96-141 (12) in eastern Zimbabwe. Hanson et al. (8) reported U-Pb zircon isotope analyses that were 1.9 to 17.9% discordant. They inferred that the 207Pb/206Pb date for the most concordant grain (1104.7 ± 2.3 Ma) provided the best estimate of the age of the sill. This result is superseded by new analyses reported in fig. S4 and table S2, which yield a weighted mean 207Pb/206Pb date of 1106.0 ± 0.6 Ma (fig. 1).
20. S. A. Bowring, unpublished data.

When a magnetic flux, ϕ, passes through a mesoscopic ring, the quantum states and dynamics of electrons on the ring are influenced by the Aharonov-Bohm (AB) phase (ϕ); that is, $\phi/2\pi$ where $\phi_0 = h/e$ is the magnetic flux quantum (h is the Planck constant and e is the electronic charge). When the phase coherence length exceeds the circumference, quantum interference between loop trajectories of opposite sense induces magnetoresistance oscillations with period ϕ_0 (known as AB oscillations) and $\phi_0/2$ [known as Altshuler-Aronov-Spivak (AAS) oscillations (2)]. These oscillations have been observed in various metallic rings and tubes (3), including the recent observation of the AAS oscillations in multivalled carbon nanotubes (4).
Furthermore, a recent far-infrared study of semiconducting nanorings revealed AB phase–dependent spectral features (5).

A single-walled carbon nanotube (SWNT) is a tubular crystal of sp2-bonded carbon atoms, whose basic properties (such as metallicity) are determined by a pair of integers, or chirality, (n,m). When threaded by \(\phi \), its band structure is predicted to depend on \(\phi/\phi_0 \) (6, 7), a manifestation of the AB effect, having no counterpart in mesoscopic rings and arising from the fact that the periodic lattice potential along the circumferential direction strictly enforces the Bloch condition along exactly the paths that enclose the flux. Thus, in calculating the band structure, one has to take into account the interplay between the Bloch theorem and the AB effect. The circumferential boundary condition explicitly depends on \(\phi/\phi_0 \) and the band gap oscillates with period \(\phi_0 \) (Fig. 1B). Consequences of these effects are expected to appear in various quantities (6–13), but most prominently in interband optical spectra as peak shifts and splittings (7, 12, 13). The splittings are due to degeneracy lifting (Ajiki-Ando (AA) splitting) (6, 7), with the amount of splitting given by \(\Delta E_{\text{AA}} = 6E_0\phi/\phi_0 \) when \(\phi/\phi_0 < 1/6 \) (Fig. 1, B and C). Recent success in preparing un bundled SWNTs in aqueous solutions led to the observation of chirality-dependent peaks in absorption and photoluminescence (PL) spectra (14) and to complete chirality assignments (15). This has opened ways to perform spectroscopy of SWNTs of specific chiralities.

We describe a magneto-optical study of SWNTs to directly verify these predictions. We measured absorption and PL in micelle-suspended SWNTs at magnetic fields (B) up to 45 T (16). In absorption, we observed splittings in some of the first-subband transition peaks (H1 to E1 in Fig. 1C), with the amount of splittings (30 to 40 meV at 45 T) consistent with the expected AA splitting. Splittings were not resolvable in the second-subband transitions (H2 to E2) because of their larger linewidths (~100 meV). Magneto-PL showed red shifts with increasing B for all observed peaks, the amount of which was diameter-dependent in a predicted way. Our detailed PL simulations, taking into account B-induced alignment of nanotubes, thermal population, and AA splittings, successfully reproduce the observed spectra, supporting our interpretation. It is important to point out that 45 T is not high enough to reveal a full period of the AB effect. For a typical nanotube diameter of 1 nm, 45 T corresponds to \(\phi/\phi_0 = 8.55 \times 10^{-3} \).

Figure 2A shows polarization (P)–dependent magneto-absorption for the first-subband (E1H1) transitions measured in the Voigt geometry (with light propagation vector \(\mathbf{k} \) perpendicular to the field). The solid and dashed lines are for parallel (B//P) and perpendicular (B\perp P) polarizations, respectively. The field induces changes in the spectrum. No traces are intentionally offset, so the P-dependent vertical shifts are real; that is, the B increases the absorption in the parallel case and decreases the absorption in the perpendicular case, resulting in large optical anisotropy. At 45 T, the absorption coefficient ratio (\(\alpha_{//}/\alpha_{\perp} \)) is ~4. The optical anisotropy, defined as \(\alpha_{//} - \alpha_{\perp} \), is plotted versus energy for 0, 20, and 45 T (Fig. 2B), where the dotted lines are raw data and the solid lines are polynomial fits. At a given B, the anisotropy is larger for lower energies (corresponding to larger diameters). Because light polarized perpendicular to the tube axis is not absorbed (7), this indicates that larger-diameter tubes align better.

The field also induces spectral modifications. Each absorption peak broadens with increasing B, and finally some of the peaks split in the highest field range, 30 to 45 T only in the B//P case (Fig. 2C). The typical linewidth of E1H1 transitions is ~20 meV, whereas the splitting is ~35 meV, indicating that the field range we used was just high enough. On the other hand, the typical linewidth of E2H2 transitions is large (~100 meV) because of the shorter carrier lifetimes and/or dephasing times in the second subbands (17). Therefore, as shown in Fig. 2D, B-induced spectral changes are not observable in the E2H2 transitions (the expected amount of splitting is the same as E1H1), although optical anisotropy is clearly present.

Figure 3A shows magneto-PL spectra up to 45 T, excited by a 633-nm He-Ne laser.
The chiralities \((n,m)\) of the main five peaks, peaks 1 to 5, are indicated in the caption. It can be seen that all PL peaks exhibit interesting spectral evolution with \(B\). Specifically, all peaks shift to lower energy, and the shift is more obvious for lower-energy peaks (peaks 1 and 2) or larger-diameter tubes.

Our observations can be explained in terms of the AB effect–induced AA splitting if we consider the magnetic alignment of nanotubes. The nanotubes align because of their highly anisotropic magnetic susceptibilities \(\chi\) \((9, 10)\). When \(\phi/\phi_0 \ll 1\), metallic tubes are predicted to be paramagnetic only along their axes \(|\chi_\parallel| > \chi_\perp\), and semiconducting tubes are predicted to be diamagnetic in all directions \(\chi_\parallel < 0\), but its negative \(\chi_\parallel\) is strongest perpendicular to their axes \(|\chi_\parallel| < |\chi_\perp|\). This essentially dictates that a \(B\) would act on both metallic and semiconducting tubes with a torque that tends to align the tube along the \(B\) direction. This effect has been already used for making macroscopic films of aligned bundles of nanotubes \((18)\).

Unlike Zeeman splitting, the amount of AA splitting depends on the angle between the tube and the field and can reach the maximum value when the tube is parallel to \(B\) because \(\phi/\phi_0\) is then maximal. This explains why significant spectral changes were observed in absorption only for \(P\) parallel to \(B\). Unlike PL data, which show resolved peaks corresponding to different chiralities, an absorption peak can originate from several overlapping peaks corresponding to different chiralities present in the sample \((15)\), which complicates the data analysis. Nevertheless, the fact that the splittings were observed for \(B//P\), but not for \(B \perp P\), demonstrates the angle-dependent nature of the observed AA splitting.

The 0-T PL data can be adequately fitted using Lorentzian peaks corresponding to specific chiralities (Fig. 3A). To take into account the angle distribution of nanotubes at finite fields, we use the Maxwell-Boltzmann statistics. The probability density that a given nanotube, consisting of \(N\) moles of carbon atoms, is at an angle \(\theta\) relative to the field can be written as [see, for example, \((18)\)]

\[
dP(\theta) = \frac{\exp(-u^2 \sin^2 \theta)}{\int_0^{\pi/2} \exp(-u^2 \sin^2 \theta) \sin \theta d\theta}\]

where \(u = (B^2/2N)(\chi_\parallel - \chi_\perp)/k_B T\)^{1/2} \((k_B\) is the Boltzmann constant and \(T\) is temperature). The quantity \(u\) is a dimensionless measure of alignment, containing the ratio of the alignment energy to the thermal energy, and completely determines the angle distribution of an ensemble of nanotubes of the same length for a given chirality at given \(B\) and \(T\). Starting from the 0-T fit, the angle-dependent splitting at 45 T, averaged over the angle distribution, was calculated by taking the 45-T AA splitting for a tube parallel to \(B\) and \(u\) as fitting parameters for each chirality present. The obtained 45-T fit is shown as a dashed curve in Fig. 3A, and the best values for \(u\)’s and splittings are shown in Fig. 3, C and D, respectively. The obtained values for 45-T splitting are comparable to the predicted AA values; they are an order of magnitude larger than the 45-T Zeeman splitting (with \(g = 2\)). Larger \(u\) values are obtained for lower-energy (larger-diameter) peaks (Fig. 3D), which is consistent with absorption data (Fig. 2B) and is expected \((9, 10)\).

Our model implies that values for AA splitting and \(u\)’s should be both proportional to the applied field \(B\). As a critical test of these assumptions, calculations for intermediate fields were plotted using values for splittings and \(u\)’s derived from the fitted 45-T values (Fig. 3B). Excellent agreement between the measured and calculated spectra further supports our model and conclusions. More specifically, the model reproduces the observed increase and decrease of PL peak widths with increasing \(B\). This happens because of the fact that tubes having different angles with respect to \(B\) show different amounts of splitting (due to different values of \(\phi\)). This inhomogeneous broadening disappears at small fields (because \(\phi \sim 0\) for all tubes) and high fields (because the majority of tubes are then nearly parallel to the \(B\) direction).

These results not only verify the quantum theories based on the Bloch theorem and the AB phase but also open up possibilities for further studies of one-dimensional magnetoexcitons in individually suspended and aligned SWNTs.

References and Notes
16. See supporting material on Science Online for details.
19. Supported by the Robert A. Welch Foundation (through grant no. C-1509), the Texas Advanced Technology Program (through project no. 003604-0001-2001), and NSF (through grant no. DMR-0134058). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF cooperative agreement no. DMR-0084813 and by the State of Florida.

Supporting Online Material
www.sciencemag.org/cgi/content/full/304/5764/1129/DC1
SOM Text
Fig S1
References
6 February 2004; accepted 14 April 2004

www.sciencemag.org SCIENCE VOL 304 21 MAY 2004 1131