ICON PROVIDES INFORMATION ON NEW PAPER EXPLORING LINK BETWEEN NANOTUBES AND MESOTHELIOMA
Review of findings, author and expert commentaries and more available at ICON Website

HOUSTON, TX, MAY 20, 2008 – The International Council on Nanotechnology (ICON) has posted information on its website relating to a paper, published today in Nature Nanotechnology, which reports the findings of a recent study showing that certain multi-walled carbon nanotubes (MWCNT) can induce in mice a response similar to that induced by amosite asbestos fibers.

Exposure to asbestos has been linked in humans to a type of cancer known as mesothelioma, a disease in which malignant cells develop in the mesothelium, a protective lining that covers most of the body’s internal organs. The disease occurs predominately in the pleura, which lines the lungs and chest cavity. It is almost always caused by long-term exposure to certain forms of asbestos and is a response to fiber-shaped particles. In this study, author Ken Donaldson and colleagues injected long and short MWCNTs into the peritoneal cavity of mice and noted one day later that the mesothelium had the same inflammatory response to the long nanotube fibers as to long asbestos fibers. Seven days after injection the mice injected with long straight nanotubes and long straight asbestos fibers had developed scar-like lesions. The short tangled MWCNTs and short asbestos fibers did not show these effects.

ICON has posted a Backgrounder reviewing the findings of this study and a previous one, published in The Journal of Toxicological Science, by Takagi et al. The site also includes commentaries from the authors and other subject-matter experts, provides resources for additional reading and links to a forum where you can further discuss this work. The ICON Backgrounder is available at http://icon.rice.edu/resources.cfm?doc_id=12299.

###

About the papers

About ICON
The International Council on Nanotechnology (ICON) is an international, multi-stakeholder organization based at Rice University. Our mission is to develop and communicate information regarding potential environmental and health risks of nanotechnology thereby fostering risk reduction while maximizing societal benefit. The council has evolved into a network of scholars, industrialists, government officials and public interest advocates who share information and perspectives on a broad range of issues at the intersection of nanotechnology and environment, health and safety. We maintain a public portal for information on nanomaterial environment, health and safety (EHS) at http://icon.rice.edu.